Share Email Print
cover

Proceedings Paper

Particle removal challenges of EUV patterned masks for the sub-22nm HP node
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The particle removal efficiency (PRE) of cleaning processes diminishes whenever the minimum defect size for a specific technology node becomes smaller. For the sub-22 nm half-pitch (HP) node, it was demonstrated that exposure to high power megasonic up to 200 W/cm2 did not damage 60 nm wide TaBN absorber lines corresponding to the 16 nm HP node on wafer. An ammonium hydroxide mixture and megasonics removes ≥50 nm SiO2 particles with a very high PRE. A sulfuric acid hydrogen peroxide mixture (SPM) in addition to ammonium hydroxide mixture (APM) and megasonic is required to remove ≥28 nm SiO2 particles with a high PRE. Time-of-flight secondary ion mass spectroscopy (TOFSIMS) studies show that the presence of O2 during a vacuum ultraviolet (VUV) (λ=172 nm) surface conditioning step will result in both surface oxidation and Ru removal, which drastically reduce extreme ultraviolet (EUV) mask life time under multiple cleanings. New EUV mask cleaning processes show negligible or no EUV reflectivity loss and no increase in surface roughness after up to 15 cleaning cycles. Reviewing of defect with a high current density scanning electron microscope (SEM) drastically reduces PRE and deforms SiO2 particles. 28 nm SiO2 particles on EUV masks age very fast and will deform over time. Care must be taken when reviewing EUV mask defects by SEM. Potentially new particles should be identified to calibrate short wavelength inspection tools. Based on actinic image review, 50 nm SiO2 particles on top of the EUV mask will be printed on the wafer.

Paper Details

Date Published: 20 March 2010
PDF: 11 pages
Proc. SPIE 7636, Extreme Ultraviolet (EUV) Lithography, 76360N (20 March 2010); doi: 10.1117/12.847056
Show Author Affiliations
Abbas Rastegar, SEMATECH North (United States)
Sean Eichenlaub, SEMATECH North (United States)
Arun John Kadaksham, SEMATECH North (United States)
Byunghoon Lee, SEMATECH North (United States)
Matt House, SEMATECH North (United States)
Sungmin Huh, SEMATECH North (United States)
Brian Cha, SEMATECH North (United States)
Henry Yun, SEMATECH North (United States)
Iacopo Mochi, Lawrence Berkeley National Lab. (United States)
Kenneth Goldberg, Lawrence Berkeley National Lab. (United States)


Published in SPIE Proceedings Vol. 7636:
Extreme Ultraviolet (EUV) Lithography
Bruno M. La Fontaine, Editor(s)

© SPIE. Terms of Use
Back to Top