Share Email Print

Proceedings Paper

Self-leveling 2D DPN probe arrays
Author(s): Jason R. Haaheim; Vadim Val; Ed Solheim; John Bussan; J. Fragala; Mike Nelson
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Dip Pen Nanolithography® (DPN®) is a direct write scanning probe-based technique which operates under ambient conditions, making it suitable to deposit a wide range of biological and inorganic materials. Precision nanoscale deposition is a fundamental requirement to advance nanoscale technology in commercial applications, and tailoring chemical composition and surface structure on the sub-100 nm scale benefits researchers in areas ranging from cell adhesion to cell-signaling and biomimetic membranes. These capabilities naturally suggest a "Desktop Nanofab" concept - a turnkey system that allows a non-expert user to rapidly create high resolution, scalable nanostructures drawing upon well-characterized ink and substrate pairings. In turn, this system is fundamentally supported by a portfolio of MEMS devices tailored for microfluidic ink delivery, directed placement of nanoscale materials, and cm2 tip arrays for high-throughput nanofabrication. Massively parallel two-dimensional nanopatterning is now commercially available via NanoInk's 2D nano PrintArray™, making DPN a high-throughput (>3×107 μm2 per hour), flexible and versatile method for precision nanoscale pattern formation. However, cm2 arrays of nanoscopic tips introduce the nontrivial problem of getting them all evenly touching the surface to ensure homogeneous deposition; this requires extremely precise leveling of the array. Herein, we describe how we have made the process simple by way of a selfleveling gimbal attachment, coupled with semi-automated software leveling routines which bring the cm^2 chip to within 0.002 degrees of co-planarity. This excellent co-planarity yields highly homogeneous features across a square centimeter, with <6% feature size standard deviation. We have engineered the devices to be easy to use, wire-free, and fully integrated with both of our patterning tools: the DPN 5000, and the NLP 2000.

Paper Details

Date Published: 17 February 2010
PDF: 9 pages
Proc. SPIE 7593, Microfluidics, BioMEMS, and Medical Microsystems VIII, 759312 (17 February 2010); doi: 10.1117/12.846603
Show Author Affiliations
Jason R. Haaheim, NanoInk, Inc. (United States)
Vadim Val, NanoInk, Inc. (United States)
Ed Solheim, NanoInk, Inc. (United States)
John Bussan, NanoInk, Inc. (United States)
J. Fragala, NanoInk, Inc. (United States)
Mike Nelson, NanoInk, Inc. (United States)

Published in SPIE Proceedings Vol. 7593:
Microfluidics, BioMEMS, and Medical Microsystems VIII
Holger Becker; Wanjun Wang, Editor(s)

© SPIE. Terms of Use
Back to Top