Share Email Print
cover

Proceedings Paper

Piezoelectrically actuated insect scale flapping wing
Author(s): Sujoy Mukherjee; Ranjan Ganguli
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

An energy method is used in order to derive the non-linear equations of motion of a smart flapping wing. Flapping wing is actuated from the root by a PZT unimorph in the piezofan configuration. Dynamic characteristics of the wing, having the same size as dragonfly Aeshna Multicolor, are analyzed using numerical simulations. It is shown that flapping angle variations of the smart flapping wing are similar to the actual dragonfly wing for a specific feasible voltage. An unsteady aerodynamic model based on modified strip theory is used to obtain the aerodynamic forces. It is found that the smart wing generates sufficient lift to support its own weight and carry a small payload. It is therefore a potential candidate for flapping wing of micro air vehicles.

Paper Details

Date Published: 9 April 2010
PDF: 12 pages
Proc. SPIE 7643, Active and Passive Smart Structures and Integrated Systems 2010, 76432A (9 April 2010); doi: 10.1117/12.846484
Show Author Affiliations
Sujoy Mukherjee, Indian Institute of Science (India)
Ranjan Ganguli, Indian Institute of Science (India)


Published in SPIE Proceedings Vol. 7643:
Active and Passive Smart Structures and Integrated Systems 2010
Mehrdad N. Ghasemi-Nejhad, Editor(s)

© SPIE. Terms of Use
Back to Top