Share Email Print
cover

Proceedings Paper

Forecasting of aerosol extinction of the sea and coastal atmosphere surface layer
Author(s): G. A. Kaloshin
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The focus of our study is the extinction and optical effects due to aerosol in a specific coastal region. The aerosol microphysical model of the marine and coastal atmosphere surface layer is considered. The model is made on the basis of the long-term experimental data received at researches of aerosol sizes distribution function (dN/dr) in the band particles sizes in 0.01 - 100 μk. The model is developed by present time for the band of heights is 0 - 25 m. Bands of wind speed is 3 - 18 km/s, sizes fetch is up to 120 km, RH = 40 - 98 %. Key feature of model is parameterization of amplitude and width of the modes as functions of fetch and wind speed. In the paper the dN/dr behavior depending at change meteorological parameters, heights above sea level, fetch (X), wind speed (U) and RH is show. On the basis of the developed model with usage of Mie theory for spheres the description of last version of developed code MaexPro (Marine Aerosol Extinction Profiles) for spectral profiles of aerosol extinction coefficients α(λ) calculations in the wavelength band, equal λ = 0.2 - 12 μm is presented. The received results are compared models NAN and ANAM. Also α(λ) profiles for various wind modes (combinations X and U) calculated by MaexPro code are given. The calculated spectrums of α(λ) profiles are compared with experimental data of α(λ) received by a transmission method in various geographical areas.

Paper Details

Date Published: 20 April 2010
PDF: 14 pages
Proc. SPIE 7678, Ocean Sensing and Monitoring II, 76780B (20 April 2010); doi: 10.1117/12.845977
Show Author Affiliations
G. A. Kaloshin, V.E. Zuev Institute of Atmospheric Optics (Russian Federation)


Published in SPIE Proceedings Vol. 7678:
Ocean Sensing and Monitoring II
Weilin (Will) Hou; Robert A. Arnone, Editor(s)

© SPIE. Terms of Use
Back to Top