Share Email Print
cover

Proceedings Paper

Multiplexed Dip Pen Nanolithography patterning by simple desktop nanolithography platform
Author(s): Jae-Won Jang; Alexander Smetana; Paul Stiles
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Multiplexed patterning in the micro-scale has been required in order to accomplish functional bio-materials templating on the subcellular length scale. Multiplexed bio-material patterns can be used in several fields: high sensitivity DNA/protein chip development, cell adhesion/differentiation studies, and biological sensor applications. Especially, two or more materials' patterning in subcellular length scale is highly demanding to develop a multi-functional and highintegrated chip device. The multiplexing patterning of two or more materials is a challenge because of difficulty in an alignment and a precision of patterning. In this work, we demonstrate that multiplexed dip pen nanolithography® (DPN®) patterning up to four different material inks by means of using recently developed new generation nanolithography platform (NLP 2000™, NanoInk, Inc., Skokie, IL). Ink materials were prepared by adding different colored fluorescent dyes to matrix carrier materials, such as poly(ethylene glycol) dimethacrylate (PEG-DMA) and lipid material (1,2- dioleoyl-sn-glycero-3-phosphocholine, DOPC). Finally, dot-array patterns of four different inks were obtained in 50 × 50 μm2 area. This lithography platform is capable of patterning 12 separate materials within micrometer areas by efficient use of the available MEMS accessories. This number can be scaled up further with development of new accessories.

Paper Details

Date Published: 17 February 2010
PDF: 8 pages
Proc. SPIE 7593, Microfluidics, BioMEMS, and Medical Microsystems VIII, 75930Y (17 February 2010); doi: 10.1117/12.845214
Show Author Affiliations
Jae-Won Jang, NanoInk, Inc. (United States)
Alexander Smetana, NanoInk, Inc. (United States)
Paul Stiles, NanoInk, Inc. (United States)


Published in SPIE Proceedings Vol. 7593:
Microfluidics, BioMEMS, and Medical Microsystems VIII
Holger Becker; Wanjun Wang, Editor(s)

© SPIE. Terms of Use
Back to Top