Share Email Print

Proceedings Paper

Anatomy guided automated SPECT renal seed point estimation
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Quantification of SPECT(Single Photon Emission Computed Tomography) images can be more accurate if correct segmentation of region of interest (ROI) is achieved. Segmenting ROI from SPECT images is challenging due to poor image resolution. SPECT is utilized to study the kidney function, though the challenge involved is to accurately locate the kidneys and bladder for analysis. This paper presents an automated method for generating seed point location of both kidneys using anatomical location of kidneys and bladder. The motivation for this work is based on the premise that the anatomical location of the bladder relative to the kidneys will not differ much. A model is generated based on manual segmentation of the bladder and both the kidneys on 10 patient datasets (including sum and max images). Centroid is estimated for manually segmented bladder and kidneys. Relatively easier bladder segmentation is followed by feeding bladder centroid coordinates into the model to generate seed point for kidneys. Percentage error observed in centroid coordinates of organs from ground truth to estimated values from our approach are acceptable. Percentage error of approximately 1%, 6% and 2% is observed in X coordinates and approximately 2%, 5% and 8% is observed in Y coordinates of bladder, left kidney and right kidney respectively. Using a regression model and the location of the bladder, the ROI generation for kidneys is facilitated. The model based seed point estimation will enhance the robustness of kidney ROI estimation for noisy cases.

Paper Details

Date Published: 22 March 2010
PDF: 7 pages
Proc. SPIE 7622, Medical Imaging 2010: Physics of Medical Imaging, 76222M (22 March 2010); doi: 10.1117/12.844162
Show Author Affiliations
Shekhar Dwivedi, Philips Electronics India Ltd. (India)
Sailendra Kumar, Philips Electronics India Ltd. (India)

Published in SPIE Proceedings Vol. 7622:
Medical Imaging 2010: Physics of Medical Imaging
Ehsan Samei; Norbert J. Pelc, Editor(s)

© SPIE. Terms of Use
Back to Top