Share Email Print

Proceedings Paper

Automated detection and classification of major retinal vessels for determination of diameter ratio of arteries and veins
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Abnormalities of retinal vasculatures can indicate health conditions in the body, such as the high blood pressure and diabetes. Providing automatically determined width ratio of arteries and veins (A/V ratio) on retinal fundus images may help physicians in the diagnosis of hypertensive retinopathy, which may cause blindness. The purpose of this study was to detect major retinal vessels and classify them into arteries and veins for the determination of A/V ratio. Images used in this study were obtained from DRIVE database, which consists of 20 cases each for training and testing vessel detection algorithms. Starting with the reference standard of vasculature segmentation provided in the database, major arteries and veins each in the upper and lower temporal regions were manually selected for establishing the gold standard. We applied the black top-hat transformation and double-ring filter to detect retinal blood vessels. From the extracted vessels, large vessels extending from the optic disc to temporal regions were selected as target vessels for calculation of A/V ratio. Image features were extracted from the vessel segments from quarter-disc to one disc diameter from the edge of optic discs. The target segments in the training cases were classified into arteries and veins by using the linear discriminant analysis, and the selected parameters were applied to those in the test cases. Out of 40 pairs, 30 pairs (75%) of arteries and veins in the 20 test cases were correctly classified. The result can be used for the automated calculation of A/V ratio.

Paper Details

Date Published: 9 March 2010
PDF: 8 pages
Proc. SPIE 7624, Medical Imaging 2010: Computer-Aided Diagnosis, 76240J (9 March 2010); doi: 10.1117/12.843898
Show Author Affiliations
Chisako Muramatsu, Gifu Univ. (Japan)
Yuji Hatanaka, Univ. of Shiga Prefecture (Japan)
Tatsuhiko Iwase, Gifu Univ. (Japan)
Takeshi Hara, Gifu Univ. (Japan)
Hiroshi Fujita, Gifu Univ. (Japan)

Published in SPIE Proceedings Vol. 7624:
Medical Imaging 2010: Computer-Aided Diagnosis
Nico Karssemeijer; Ronald M. Summers, Editor(s)

© SPIE. Terms of Use
Back to Top