Share Email Print
cover

Proceedings Paper

A practical approach to spectral calibration of short wavelength infrared hyper-spectral imaging systems
Author(s): Miran Bürmen; Franjo Pernuš; Boštjan Likar
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Near-infrared spectroscopy is a promising, rapidly developing, reliable and noninvasive technique, used extensively in the biomedicine and in pharmaceutical industry. With the introduction of acousto-optic tunable filters (AOTF) and highly sensitive InGaAs focal plane sensor arrays, real-time high resolution hyper-spectral imaging has become feasible for a number of new biomedical in vivo applications. However, due to the specificity of the AOTF technology and lack of spectral calibration standardization, maintaining long-term stability and compatibility of the acquired hyper-spectral images across different systems is still a challenging problem. Efficiently solving both is essential as the majority of methods for analysis of hyper-spectral images relay on a priori knowledge extracted from large spectral databases, serving as the basis for reliable qualitative or quantitative analysis of various biological samples. In this study, we propose and evaluate fast and reliable spectral calibration of hyper-spectral imaging systems in the short wavelength infrared spectral region. The proposed spectral calibration method is based on light sources or materials, exhibiting distinct spectral features, which enable robust non-rigid registration of the acquired spectra. The calibration accounts for all of the components of a typical hyper-spectral imaging system such as AOTF, light source, lens and optical fibers. The obtained results indicated that practical, fast and reliable spectral calibration of hyper-spectral imaging systems is possible, thereby assuring long-term stability and inter-system compatibility of the acquired hyper-spectral images.

Paper Details

Date Published: 24 February 2010
PDF: 6 pages
Proc. SPIE 7556, Design and Quality for Biomedical Technologies III, 755614 (24 February 2010); doi: 10.1117/12.841866
Show Author Affiliations
Miran Bürmen, Univ. of Ljubljana (Slovenia)
Franjo Pernuš, Univ. of Ljubljana (Slovenia)
Sensum Computer Vision Systems (Slovenia)
Boštjan Likar, Univ. of Ljubljana (Slovenia)
Sensum Computer Vision Systems (Slovenia)


Published in SPIE Proceedings Vol. 7556:
Design and Quality for Biomedical Technologies III
Ramesh Raghavachari; Rongguang Liang, Editor(s)

© SPIE. Terms of Use
Back to Top