Share Email Print

Proceedings Paper

Extraction of complex refractive index dispersion from SPR data
Author(s): Mohamed Nakkach; Julien Moreau; Michael Canva
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Surface Plasmon Resonnance (SPR) techniques have been mostly set-up as angular reflectivity interrogation mode using quasi-monochromatic light or as spectral reflectivity interrogation mode at one given wavelength, providing information about variation of effective optical thickness ▵n.e above the metal surface. In this communication we present a dual mode sensor working both in angular and spectral interrogation modes. A white light illuminates the sensor surface and the reflectivity spectra in TE and TM polarization are measured with a spectrometer. By changing the angular coupling conditions, a complete reflectivity surface R(θ, λ) can be measured. The 2D reflectivity decrease valley is affected by both the real and imaginary part of the optical index of the dielectric medium as well as their spectral dispersion. With such experimental data set, it is possible to back calculate the dispersion of the complex refractive index of the dielectric layer. This is demonstrated using a turquoise dye doped solution. According to the Kramers-Kronig relations, the imaginary part of the refractive index for an absorbing medium is proportional to the absorption while the real part presents a large dispersion around the absorption wavelength. The reflectivity surface R(θ, λ) was measured from 500 nm to 750 nm over about 8° angular range. The whole complex refractive optical index of the doped solution, absorbing around 630 nm, was reconstructed from the SPR reflectivity experimental data, using a homemade program based on an extended Rouard method to fit the experimental angular plasmon data for each wavelength. These results show that the classical SPR technique can be extended to acquire precise spectral information about biomolecular interactions occurring on the metallic layer.

Paper Details

Date Published: 16 February 2010
PDF: 8 pages
Proc. SPIE 7577, Plasmonics in Biology and Medicine VII, 75770X (16 February 2010); doi: 10.1117/12.841800
Show Author Affiliations
Mohamed Nakkach, Lab. Charles Fabry de l'Institut d'Optique, CNRS, Univ. Paris-Sud (France)
Lab. de Spectroscopie Atomique Moléculaire et Applications (Tunisia)
Julien Moreau, Lab. Charles Fabry de l'Institut d'Optique, CNRS, Univ. Paris-Sud (France)
Michael Canva, Lab. Charles Fabry de l'Institut d'Optique, CNRS, Univ. Paris-Sud (France)

Published in SPIE Proceedings Vol. 7577:
Plasmonics in Biology and Medicine VII
Tuan Vo-Dinh; Joseph R. Lakowicz, Editor(s)

© SPIE. Terms of Use
Back to Top