Share Email Print

Proceedings Paper

Optimizing treatment parameters for the vascular malformations using 1064-nm Nd:YAG laser
Author(s): Wei Gong; He Lin; Shusen Xie
Format Member Price Non-Member Price
PDF $17.00 $21.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Near infrared Nd:YAG pulsed laser treatment had been proved to be an efficient method to treat large-sized vascular malformations like leg telangiectasia for deep penetrating depth into skin and uniform light distribution in vessel. However, optimal clinical outcome was achieved by various laser irradiation parameters and the key factor governing the treatment efficacy was still unclear. A mathematical model in combination with Monte Carlo algorithm and finite difference method was developed to estimate the light distribution, temperature profile and thermal damage in epidermis, dermis and vessel during and after 1064 nm pulsed Nd:YAG laser irradiation. Simulation results showed that epidermal protection could be achieved during 1064 nm Nd:YAG pulsed laser irradiation in conjunction with cryogen spray cooling. However, optimal vessel closure and blood coagulation depend on a compromise between laser spot size and pulse duration.

Paper Details

Date Published: 2 March 2010
PDF: 6 pages
Proc. SPIE 7548, Photonic Therapeutics and Diagnostics VI, 75480S (2 March 2010); doi: 10.1117/12.841587
Show Author Affiliations
Wei Gong, Fujian Normal Univ. (China)
He Lin, Fujian Normal Univ. (China)
Shusen Xie, Fujian Normal Univ. (China)

Published in SPIE Proceedings Vol. 7548:
Photonic Therapeutics and Diagnostics VI
Anita Mahadevan-Jansen; Andreas Mandelis; Brian Jet-Fei Wong M.D.; Nikiforos Kollias; Henry Hirschberg M.D.; Kenton W. Gregory M.D.; Reza S. Malek; E. Duco Jansen; Guillermo J. Tearney; Steen J. Madsen; Bernard Choi; Justus F. R. Ilgner; Haishan Zeng; Laura Marcu, Editor(s)

© SPIE. Terms of Use
Back to Top