Share Email Print

Proceedings Paper

Zonal efficiency limit calculation for nanostructured solar cells
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We extend the well-known Shockley-Queisser detailed balance calculation for determining the efficiency limit of a solar cell to the case of strong local deviations of the optical power absorption as present in nano-structured photovoltaic devices. In addition, the simple assumption of perfect absorption of all incident light exceeding the bandgap is refined. We present a modified Shockley-Queisser efficiency limit calculation for nano-structured photovoltaic devices, it incorporates a rigorous wave optics calculation and spatially resolved generation of electron-hole pairs. We apply this method to core-shell single-junction InP nanowire array for the use in concentrator solar cells. We investigate the efficiency limits regarding the arrangement of the active regions within the wire. Our results indicate that in a nanowire array solar cell with low volume fill factor the efficiency limit can approach the values of planar thin-film devices. This observation indicates the occurrence of micro-concentration and underlines the necessity of a wave optics approach. The spatially and spectrally resolved analysis shows that generation on the surface of the nanowires is considerable, particularly with regard to high energy photons. Therefore, it is necessary to efficiently extract those carriers.

Paper Details

Date Published: 25 February 2010
PDF: 10 pages
Proc. SPIE 7597, Physics and Simulation of Optoelectronic Devices XVIII, 759704 (25 February 2010); doi: 10.1117/12.841356
Show Author Affiliations
Jan Kupec, ETH Zürich (Switzerland)
Shuqing Yu, Univ. Kassel (Germany)
Bernd Witzigmann, Univ. Kassel (Germany)

Published in SPIE Proceedings Vol. 7597:
Physics and Simulation of Optoelectronic Devices XVIII
Bernd Witzigmann; Fritz Henneberger; Yasuhiko Arakawa; Marek Osinski, Editor(s)

© SPIE. Terms of Use
Back to Top