Share Email Print

Proceedings Paper

Nanobiomedicine crystal-inspired optical quantum bit storage
Author(s): Yan Fang; Fangzhang Wang; Mingyang Rong
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The present study is aimed to develop a nanobiomedicine crystal-inspired optical quantum bit (qubit) storage system, as one candidate of potentially promising solutions to the nanofabrication problem, by a bottom-up approach of chemical or physical forces operating at a nanometer scale, to self-assemble 0.1nm~10nm basic units into a large "vertical" storage architecture for simultaneously computing several qubits. The state of an optical qubit may be measured in a momentum space by using laser micro-photoluminescence spectrum (Laser micro-PL spectrum) in combination with the Gaussian non-linear function fit of optical wavelengths and optical intensities and twice faster Fourier transformations of photoluminescence spectra at time and frequency domains. All architectures of self-assembled nanobiomedicine may be probed by conducting atomic force microscopy (C-AFM) in three dimensions (x, y, z axes) with a powerfully spatial resolution at sub-angstrom. The reproducible results of optical qubit measurements in self-assembled nanobiomedicine crystals more than six times by laser micro-PL spectra for one nanobiomedicine crystal sample were acquired, as shown in average values of wavelengths and intensities with standard deviations in laser micro-PL spectra. It is concluded that the nanobiomedicine crystal-inspired optical qubit storage is emerging as a new solid state storage system.

Paper Details

Date Published: 23 October 2009
PDF: 9 pages
Proc. SPIE 7517, Photonics and Optoelectronics Meetings (POEM) 2009: Optical Storage and New Storage Technologies, 75170E (23 October 2009); doi: 10.1117/12.841279
Show Author Affiliations
Yan Fang, Fudan Univ. (China)
Fangzhang Wang, Fudan Univ. (China)
Mingyang Rong, Fudan Univ. (China)

Published in SPIE Proceedings Vol. 7517:
Photonics and Optoelectronics Meetings (POEM) 2009: Optical Storage and New Storage Technologies
Masud Mansuripur; Changsheng Xie; Xiangshui Miao, Editor(s)

© SPIE. Terms of Use
Back to Top