Share Email Print
cover

Proceedings Paper

Critical nanofabrication parameters for the e-beam assisted design of a subwavelength aluminum mesh
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Using finite difference time domain simulations and e-beam assisted lithography we designed and fabricated high transmission transparent contacts for UV nitride devices which consist in perpendicular sets of parallel aluminum lines with a period as low as 260 nm. Transmittance values as high as 100% were predicted for aluminum meshes with the optimized periods, metal line widths and thicknesses. Simulations were compared with optical transmittance measurements. The critical parameters -such as grain size, edge roughness and mesh coating- were determined. The large aluminum grain was decreased by performing a cold aluminum deposition. The aluminum oxide layer over the aluminum mesh was found to reduce the mesh transmittance. Several alternatives were studied to overcome this issue such as coating the mesh with a thin gold or silicon dioxide layer. While the second option appeared promising the addition of the gold layer required much more improvement.

Paper Details

Date Published: 16 February 2010
PDF: 9 pages
Proc. SPIE 7591, Advanced Fabrication Technologies for Micro/Nano Optics and Photonics III, 759107 (16 February 2010); doi: 10.1117/12.840546
Show Author Affiliations
Clarisse Mazuir, CREOL, The College of Optics and Photonics, Univ. of Central Florida (United States)
Winston V. Schoenfeld, CREOL, The College of Optics and Photonics, Univ. of Central Florida (United States)


Published in SPIE Proceedings Vol. 7591:
Advanced Fabrication Technologies for Micro/Nano Optics and Photonics III
Winston V. Schoenfeld; Jian Jim Wang; Marko Loncar; Thomas J. Suleski, Editor(s)

© SPIE. Terms of Use
Back to Top