Share Email Print
cover

Proceedings Paper

SoPC implementation of combined real-time non-uniformity correction of IRFPA
Author(s): Kun Gao; Zhao-jun Nie; Hu Yang; Guoqiang Ni
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

With the increase of pixel density and scale of IRFPA (Infrared Focal Plane Array), NUC (Non-Uniformity Correction) technology becomes more and more important to access high quality infrared images. However, traditional one-point or two-point NUC methods based on calibration technology can't achieve ideal performance because they can't overcome the non-linearity and drift of the detector response parameters in both spatial and temporal regions effectively. A novel combined real-time non-uniformity correction method is proposed based on FPGA (Field Programmable Gate Array) technology, which adopts SoPC (System-on-a-Programmable Chip) architecture based on Nios II processor core to implement the total NUC processing functions inside only one chip. The NUC processing chooses the reference-based binomial fitting algorithm to remove the main non-uniformity of the detector, and the remained non-uniformity is compensated by using the improved scene-based temporal high-pass filter algorithm. The experiment results show that the combined method based on SoPC architecture can access the ideal efforts with IRFPA size of 320×240×14bit @ 25 frames per second. The block diagram of hardware circuit and the processing flow are described in details.

Paper Details

Date Published: 24 November 2009
PDF: 8 pages
Proc. SPIE 7513, 2009 International Conference on Optical Instruments and Technology: Optoelectronic Imaging and Process Technology, 75130T (24 November 2009); doi: 10.1117/12.840090
Show Author Affiliations
Kun Gao, Beijing Institute of Technology (China)
Zhao-jun Nie, Beijing Institute of Technology (China)
Hu Yang, Beijing Institute of Technology (China)
Guoqiang Ni, Beijing Institute of Technology (China)


Published in SPIE Proceedings Vol. 7513:
2009 International Conference on Optical Instruments and Technology: Optoelectronic Imaging and Process Technology
Toru Yoshizawa; Ping Wei; Jesse Zheng, Editor(s)

© SPIE. Terms of Use
Back to Top