Share Email Print
cover

Proceedings Paper

Linewidth of high-power fiber lasers
Author(s): Marc-André Lapointe; Michel Piché
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

In this work, we examine how the linewidth of high-power Yb-doped fiber lasers changes as a function of laser power. Four-wave mixing between the various longitudinal modes of the laser cavity tends to broaden the laser linewidth, while Bragg reflectors have a narrow bandwidth that limits the extent of this broadening. An analytical model taking into account these effects predicts that the laser linewidth scales as the square root of laser power, in agreement with numerical simulations [1]. This model has been previously validated with a low-power Er-doped fiber laser [1] and with Raman fiber lasers [2]. In this paper, we compare the measurements taken with Yb-doped fiber lasers at power levels ranging from a few watts to hundreds of watts with the model. The broadening of high-power fiber lasers deviate from the model. Experimental data show that the linewidth broadens as a power function (between 0.5 to 1) of the laser power. A simple modification of the model is proposed which fits all the experimental data.

Paper Details

Date Published: 5 August 2009
PDF: 8 pages
Proc. SPIE 7386, Photonics North 2009, 73860S (5 August 2009); doi: 10.1117/12.839770
Show Author Affiliations
Marc-André Lapointe, CorActive High-Tech (Canada)
COPL, Univ. Laval (Canada)
Michel Piché, COPL, Univ. Laval (Canada)


Published in SPIE Proceedings Vol. 7386:
Photonics North 2009
Réal Vallée, Editor(s)

© SPIE. Terms of Use
Back to Top