Share Email Print

Proceedings Paper

Detection of disturbed earth using passive LWIR polarimetric imaging
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We report test results of a study to assess the applicability for using passive polarimetric imaging in the long-wave infrared (LWIR) to detect regions of recently altered road-type surfaces, e.g., soil, gravel, asphalt, etc. The field test was conducted at the U.S. Army Research Laboratory, Adelphi, MD, on a test surface best described as a well traveled dirt road consisting of a gravel clay-soil mixture that was well compacted. During this initial proof-of-concept test, a LWIR polarimetric camera system was positioned at a slant-path of 10 degrees with respect to the line-of-site (LOS) and the natural lay of the surface, approximately 15 meters from the target test-bed. Stokes images, S0, S1, and S2, were recorded using the LWIR polarimeter that utilizes a spinning achromatic retarder design mated to Mercury Cadmium Telluride (MCT) focal plane array (FPA). Various surrogate targets were buried near the surface and great care was taken to camouflage the area to eliminate any "visible" signs of disturbance. Thermal gradients resulting from the unearthing of cool soil were allowed to dissipate. Two metrics were used to evaluate performance, i.e., conventional receiver operating characteristic (ROC) curve analysis and an effective contrast ratio between the target and background. Results showed particularly good detectability in the S2 imagery, with less in S1, and no detectability in S0, i.e., the conventional LWIR thermal image.

Paper Details

Date Published: 11 August 2009
PDF: 15 pages
Proc. SPIE 7461, Polarization Science and Remote Sensing IV, 746115 (11 August 2009); doi: 10.1117/12.837779
Show Author Affiliations
Kristan P. Gurton, Army Research Lab. (United States)
Melvin Felton, Army Research Lab. (United States)

Published in SPIE Proceedings Vol. 7461:
Polarization Science and Remote Sensing IV
Joseph A. Shaw; J. Scott Tyo, Editor(s)

© SPIE. Terms of Use
Back to Top