Share Email Print
cover

Proceedings Paper

Analytic theory of self-similar mode-locking with rapidly varying mean-zero dispersion
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Self-similarity is a ubiquitous concept in the physical sciences used to explain a wide range of spatial- or temporalstructures observed in a broad range of applications and natural phenomena. Indeed, they have been predicted or observed in the context of Raman scattering, spatial soliton fractals, propagation in the normal dispersion regime with strong nonlinearity, optical amplifiers, and mode-locked lasers. These self-similar structures are typically long-time transients formed by the interplay, often nonlinear, of the underlying dominant physical effects in the system. A theoretical model shows that in the context of the universal Ginzburg-Landau equation with rapidly-varying, mean-zero dispersion, stable and attracting self-similar pulses are formed with parabolic profiles: the zero-dispersion similariton. The zero-dispersion similariton is the final solution state of the system, not a long-time, intermediate asymptotic behavior. An averaging analysis shows the self-similarity to be governed by a nonlinear diffusion equation with a rapidly-varying, mean-zero diffusion coefficient. Indeed, the leadingorder behavior is shown to be governed by the porous media (nonlinear diffusion) equation whose solution is the well-known Barenblatt similarity solution which has a parabolic, self-similar profile. The alternating sign of the diffusion coefficient, which is driven by the dispersion fluctuations, is critical to supporting the zero-dispersion similariton which is, to leading-order, of the Barenblatt form. This is the first analytic model proposing a mechanism for generating physically realizable temporal parabolic pulses in the Ginzburg-Landau model. Although the results are of restricted analytic validity, the findings are suggestive of the underlying physical mechanism responsible for parabolic (self-similar) pulse formation in lightwave transmission and observed in mode-locked laser cavities.

Paper Details

Date Published: 4 August 2009
PDF: 8 pages
Proc. SPIE 7386, Photonics North 2009, 73860M (4 August 2009); doi: 10.1117/12.837774
Show Author Affiliations
Brandon G. Bale, Aston Univ. (United Kingdom)
J. Nathan Kutz, Univ. of Washington (United States)


Published in SPIE Proceedings Vol. 7386:
Photonics North 2009
Réal Vallée, Editor(s)

© SPIE. Terms of Use
Back to Top