Share Email Print
cover

Proceedings Paper

High-speed imaging with endoscopic optical coherence tomography using bending vibration of optical fiber
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In this report, we propose an endoscopic scanner head for optical coherence tomography (OCT) using bending vibration of an optical fiber. The optical fiber is attached to the center of a cylindrical piezoelectric actuator with four outer electrodes, and the voltages with the phase shift of π/2 are applied to the electrodes to excite a circular vibration of the fiber end. The output light from the fiber end is collimated by a lens, and deflected by 90 degrees using a cone mirror. The collimated light is scanned along the circumference of the endoscope due to the vibration of the optical fiber end. We made a prototype scanner head of 7.0 mm in outer diameter, and demonstrated tomographic imaging of tubular objects. The circumferential scan is carried out at 1 kHz which is the frequency of the fiber vibration, while the radial (depth) scan is performed at 20 kHz by the wavelength sweep of the light source. Two-dimensional OCT images were obtained in a short measuring time of 5 ms (flame rate of 200 fps), and three-dimensional dynamic imaging were demonstrated.

Paper Details

Date Published: 5 October 2009
PDF: 4 pages
Proc. SPIE 7503, 20th International Conference on Optical Fibre Sensors, 75034Y (5 October 2009); doi: 10.1117/12.835280
Show Author Affiliations
Ryoichi Isago, Tokyo Institute of Technology (Japan)
Kentaro Nakamura, Tokyo Institute of Technology (Japan)


Published in SPIE Proceedings Vol. 7503:
20th International Conference on Optical Fibre Sensors
Julian D. C. Jones, Editor(s)

© SPIE. Terms of Use
Back to Top