Share Email Print
cover

Proceedings Paper

A new design and implementation of an infrared device driver in embedded Linux systems
Author(s): Li-li Jia; Hua Cui; Ru-li Wang
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Wireless infrared communication systems are widely-used for the remote controls in portable terminals, particularly for systems requiring low cost, light weight, moderate data rates. They have already proven their electiveness for short-range temporary communications and in high data rate longer range point-to-point systems. This paper proposes the issue of design and implementation of an infrared device driver in a personal portable intelligent digital infrared communications system. After analyzing the various constraints, we use the embedded system based on Samsung S3C2440A 32-bit processor and Linux operating system to design the driver program. The program abandons its traditional Serial interface control mode, uses the generic GPIO to achieve infrared receiver device driver, and intends a user-defined communication protocol which is much more simple and convenient instead of traditional infrared communication protocol to design the character device drivers for the infrared receiver. The communication protocol uses interrupt counter to determine to receive the value and the first code.In this paper, the interrupt handling and an I/O package to reuse Linux device drivers in embedded system is introduced. Via this package, the whole Linux device driver source tree can be reused without any modifications. The driver program can set up and initialize the infrared device, transfer data between the device and the software, configure the device, monitor and trace the status of the device, reset the device, and shut down the device as requested. At last infrared test procedure was prepared and some testing and evaluations were made in a mobile infrared intelligent cicerone system, and the test result shows that the design is simple, practical, with advantages such as easy transplantation, strong reliability and convenience.

Paper Details

Date Published: 24 August 2009
PDF: 5 pages
Proc. SPIE 7381, International Symposium on Photoelectronic Detection and Imaging 2009: Material and Device Technology for Sensors, 73812I (24 August 2009); doi: 10.1117/12.835239
Show Author Affiliations
Li-li Jia, Shanghai Institute of Technical Physics (China)
Hua Cui, Shanghai Institute of Technical Physics (China)
Ru-li Wang, Shanghai Institute of Technical Physics (China)


Published in SPIE Proceedings Vol. 7381:
International Symposium on Photoelectronic Detection and Imaging 2009: Material and Device Technology for Sensors
Xu-yuan Chen; Yue-lin Wang; Zhi-ping Zhou; Qing-kang Wang, Editor(s)

© SPIE. Terms of Use
Back to Top