Share Email Print

Proceedings Paper

LD side-pumped Nd:YAG Q-switched laser without water cooling
Author(s): Ming Ling; Guang-yong Jin; Xue-chun Tan; Zhi-chao Wu; Zhu Liang
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

A novel LD side-pumped Nd:YAG Q-switched solid-state laser, which made use of the special pumping strcture with conductive cooling instead of water cooling, was investigated.After selecting an appropriate length and diameter of Nd:YAG laser crystal rod and using three groups of laser diode centimeter bar which was composed by 12 laser diodes and uniformly arranged according to the angle of 120°,side-pumping structure of laser was accomplished.Adopting plano-concave resonator ,mending double end face of laser crystal and designing heat-stability resonator made the resonator steadily oscillate.Laser crystal rod which was tight fastened by copper net was conductively cooled and radiation block was furnished on the external of copper net for increasing the radiation capacity.High reflection gold film was plated on the cooling wall in the opposite way of pumping light, so that the laser crystal was uniformly pumped and the laser with low order mode output.Making the use of pillar lens focus and ray trace computing, reasonable parameters were caculated to couple pumping light to laser with high-efficiency.It was the electrooptic Q-switched which was made to be micro-integration eliminating voltage by KD*P crystal that improved the ratio between acting and unacting.Inner heat radiated from laser in good time with TE cooler and the laser ran at constant temperature with water cooling when the big external heat sink emanated a steady heat to periphery. Experiments revealed that the syetem pumping efficiency riseed by 18% and the laser threshold energy was 192 mJ under the condition of this novel pumping structure. The low mode output of 10~12ns pulse width and the maximum output energy of 98 mJ was achieved with an incident pump energy of 720 mJ in 1064nm.The optical-to-optical conversion efficiency was up to 13. 6 %,and the power instability in 24 h was better than ±1. 7 %.

Paper Details

Date Published: 28 August 2009
PDF: 6 pages
Proc. SPIE 7382, International Symposium on Photoelectronic Detection and Imaging 2009: Laser Sensing and Imaging, 73821F (28 August 2009); doi: 10.1117/12.834586
Show Author Affiliations
Ming Ling, Changchun Univ. of Science and Technology (China)
Guang-yong Jin, Changchun Univ. of Science and Technology (China)
Xue-chun Tan, Changchun Univ. of Science and Technology (China)
Zhi-chao Wu, Changchun Univ. of Science and Technology (China)
Zhu Liang, Changchun Univ. of Science and Technology (China)

Published in SPIE Proceedings Vol. 7382:
International Symposium on Photoelectronic Detection and Imaging 2009: Laser Sensing and Imaging
Farzin Amzajerdian; Chun-qing Gao; Tian-yu Xie, Editor(s)

© SPIE. Terms of Use
Back to Top