Share Email Print
cover

Proceedings Paper

The effects of turbulent aberrations on an optical communication system based on orbital angular momentum-carrying beams
Author(s): Yi-xin Zhang; Jian-cai Xu; Jian-yu Wang; Jian-jun Jia
Format Member Price Non-Member Price
PDF $17.00 $21.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A photon communication system based on orbital angular momentum (OAM)-carrying beams is studied. We compartmentalize the atmospheric aberration into tilt,coma, astigmatism as well as defous. We numerically analyze the effects of tilt on the orbital angular momentum of communication beams and find that the tilt aberration can induce the noisy OAM. With the increasing of parameters P, L, the probability of initial OAM goes down while the effective number of noise OAM increases. At the same time, the peaks of the induced OAM probability (max-probability) are different as the P, L, changes. The increase of zenith angle damages the probability and leads to noisy OAM. This can also be applied to the impact of refractive index structure parameter. We also numerically analyze the effects which receiving-radius puts on the receiving probability of initial OAM through tilt aberration. Under the influence of tilt, the receiving probability of previous orbital angular momentum slashs with the receiving-radius becoming large.

Paper Details

Date Published: 31 August 2009
PDF: 9 pages
Proc. SPIE 7382, International Symposium on Photoelectronic Detection and Imaging 2009: Laser Sensing and Imaging, 738246 (31 August 2009); doi: 10.1117/12.834160
Show Author Affiliations
Yi-xin Zhang, Jiangnan Univ. (China)
Jian-cai Xu, Jiangnan Univ. (China)
Jian-yu Wang, Shanghai Institute of Technical Physics (China)
Jian-jun Jia, Shanghai Institute of Technical Physics (China)


Published in SPIE Proceedings Vol. 7382:
International Symposium on Photoelectronic Detection and Imaging 2009: Laser Sensing and Imaging
Farzin Amzajerdian; Chun-qing Gao; Tian-yu Xie, Editor(s)

© SPIE. Terms of Use
Back to Top