Share Email Print

Proceedings Paper

Picosecond laser ablation system with process control by optical coherence tomography
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In this contribution we describe an apparatus for precise laser ablation of delicate layers, like varnish on pictures. This specific case is very demanding. First of all any changes in colour of remaining varnish layer as well as underneath paint layers are unacceptable. This effect may be induced photochemically or thermically. In the first case strong absorption of the radiation used will eliminate its influence on underlying strata. The thermal effect is limited to so called heat affected zone (HAZ). In addition to colour change, a mechanical damage caused by overheating of the structure adjacent to ablated region should be considered also. All kinds of treads must be carefully eliminated in order to make laser ablation of varnish commonly accepted alternative to chemical and/or mechanical treatments [1]. Since the varnish ablation process is obviously irreversible its effective monitoring is very important to make it safe and trusted. As we showed previously [2-6] optical coherence tomography (OCT) originated from medicine diagnostic method for examination and imaging of cross-sections of weakly absorbing objects can be used for this task. OCT utilises infrared light for non-invasive structure examination and has been under consideration for the examining of objects of art since 2004 [7-10]. In this case the in-depth (axial) resolution is obtained by means of interference of light of high spatial (to ensure sensitivity) and very low temporal coherence (to ensure high axial resolution). In practice, IR sources of bandwidths from 25 to 150 nm are utilised. Resolutions obtained range from 15 down to 2 μm in the media of refracting index equal 1.5. In this contribution we expand application of OCT to space resolved determination of ablation rates, separately for every point of examined area. Such data help in better understanding of the ablation process, fine tuning the laser and finally permit increase of the safety of the ablation process.

Paper Details

Date Published: 10 July 2009
PDF: 8 pages
Proc. SPIE 7391, O3A: Optics for Arts, Architecture, and Archaeology II, 73910G (10 July 2009); doi: 10.1117/12.827286
Show Author Affiliations
Piotr Targowski, Nicolaus Copernicus Univ. (Poland)
Roman Ostrowski, Military Univ. of Technology (Poland)
Jan Marczak, Military Univ. of Technology (Poland)
Marcin Sylwestrzak, Nicolaus Copernicus Univ. (Poland)
Ewa A. Kwiatkowska, Nicolaus Copernicus Univ. (Poland)

Published in SPIE Proceedings Vol. 7391:
O3A: Optics for Arts, Architecture, and Archaeology II
Luca Pezzati; Renzo Salimbeni, Editor(s)

© SPIE. Terms of Use
Back to Top