Share Email Print
cover

Proceedings Paper

Studies of organic complementary inverters with pentacene and PTCDI-C13H27
Author(s): Bo-Liang Yeh; Bo-Yuan Sun; Tzu-Hsiu Chou; Yu-Hao Chen; Jr-Wei Lin; Horng-Long Cheng; Wei-Yang Chou; Henry J. H. Chen; Fu-Ching Tang; Bo-heng Liou
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We used the p-channel pentacene and n-channel PTCDI-C13H27 thin film transistors (OTFTs) to compose an organic complementary inverter device. In the experiment this device was inserted a polyimide (PI) layer into the interface of a semiconductor and gate insulator to improve the orientation phase and decrease the leakage current for n- and p-type OTFTs simultaneously. The hysteresis behavior of the transistors and inverters exhibited high trapping and detrapping speeds for the traps between gate dielectric and semiconductor layers; therefore, the PI layer had functions for improving surface roughness and reducing the hysteresis behavior of gate-dielectrics. The hysteresis of pentacene and PTCDI-C13H27 films with PI layer was smaller than that without PI obtained by capacitance-voltage measurements. Therefore, the p-type and n-type OTFTs with PI as modification layer had high field-effect mobility of 0.976 and 0.512 cm2V-1s-1, on/off ratio of 1.7×105 and 7×104, threshold voltage of -10.76 and 12.21 V, respectively; by contrast, poor performance occurred in the device without PI layer. Additionally, a good performance for the organic inverter was achieved when pentacene and PTCDI-C13H27 films grown on the PI layer exhibited the match of surface energy between the semiconductor and PI and the large grain size. An organic complementary metal oxide semiconductor (O-CMOS) device had similar drain current, threshold voltage and mobility for n-type and p-type transistors by using the PI layer as surface modification of the dielectric layer. Compared with the device without the PI layer, there were higher noise margins and gains and lower power dissipation of the O-CMOS.

Paper Details

Date Published: 20 August 2009
PDF: 9 pages
Proc. SPIE 7417, Organic Field-Effect Transistors VIII, 74171C (20 August 2009); doi: 10.1117/12.825710
Show Author Affiliations
Bo-Liang Yeh, National Cheng Kung Univ. (Taiwan)
Bo-Yuan Sun, National Cheng Kung Univ. (Taiwan)
Tzu-Hsiu Chou, National Cheng Kung Univ. (Taiwan)
Yu-Hao Chen, National Cheng Kung Univ. (Taiwan)
Jr-Wei Lin, National Cheng Kung Univ. (Taiwan)
Horng-Long Cheng, National Cheng Kung Univ. (Taiwan)
Wei-Yang Chou, National Cheng Kung Univ. (Taiwan)
Henry J. H. Chen, National Chi Nan Univ. (Taiwan)
Fu-Ching Tang, National Cheng Kung Univ. (Taiwan)
Bo-heng Liou, National Applied Research Labs (Taiwan)


Published in SPIE Proceedings Vol. 7417:
Organic Field-Effect Transistors VIII
Zhenan Bao; Iain McCulloch, Editor(s)

© SPIE. Terms of Use
Back to Top