Share Email Print
cover

Proceedings Paper

False signature reduction in infrared channeled spectropolarimetry
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Channeled spectropolarimetry, first developed by K. Oka, is capable of measuring all the Stokes parameters from a single modulated spectrum. We present a theoretical means for improving the spectral resolution of channeled spectropolarimetry by at least a factor of four. Especially valuable in the infrared due to atmospheric absorption features, this method simultaneously provides for the correction of aliasing artifacts from the channels used for the determination of the Stokes parameters. The technique is experimentally demonstrated using a Fourier transform infrared spectrometer and two multiple-order Yttrium Vanadate (YVO4) retarders. This approach is implemented with consideration of crystal dichroism effects, and reconstructions are compared with conventional channeled spectropolarimetric reconstructions from the same system. Additional results, produced by using Cadmium Sulfide (CdS) retarders, provide demonstration of the technique across the infrared.

Paper Details

Date Published: 27 August 2009
PDF: 10 pages
Proc. SPIE 7419, Infrared Systems and Photoelectronic Technology IV, 741909 (27 August 2009); doi: 10.1117/12.825435
Show Author Affiliations
Julia M. Craven, College of Optical Sciences, The Univ. of Arizona (United States)
Michael W. Kudenov, College of Optical Sciences, The Univ. of Arizona (United States)
Eustace L. Dereniak, College of Optical Sciences, The Univ. of Arizona (United States)


Published in SPIE Proceedings Vol. 7419:
Infrared Systems and Photoelectronic Technology IV
Eustace L. Dereniak; Randolph E. Longshore; Ashok K. Sood; John P. Hartke; Paul D. LeVan, Editor(s)

© SPIE. Terms of Use
Back to Top