Share Email Print

Proceedings Paper

Utilizing micro-electro-mechanical systems (MEMS) micro-shutter designs for adaptive coded aperture imaging (ACAI) technologies
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Coded aperture imaging (CAI) has been used in both the astronomical and medical communities for years due to its ability to image light at short wavelengths and thus replacing conventional lenses. Where CAI is limited, adaptive coded aperture imaging (ACAI) can recover what is lost. The use of photonic micro-electro-mechanical-systems (MEMS) for creating adaptive coded apertures has been gaining momentum since 2007. Successful implementation of micro-shutter technologies would potentially enable the use of adaptive coded aperture imaging and non-imaging systems in current and future military surveillance and intelligence programs. In this effort, a prototype of MEMS microshutters has been designed and fabricated onto a 3 mm x 3 mm square of silicon substrate using the PolyMUMPSTM process. This prototype is a line-drivable array using thin flaps of polysilicon to cover and uncover an 8 x 8 array of 20 μm apertures. A characterization of the micro-shutters to include mechanical, electrical and optical properties is provided. This prototype, its actuation scheme, and other designs for individual microshutters have been modeled and studied for feasibility purposes. In addition, microshutters fabricated from an Al-Au alloy on a quartz wafer were optically tested and characterized with a 632 nm HeNe laser.

Paper Details

Date Published: 24 August 2009
PDF: 13 pages
Proc. SPIE 7468, Adaptive Coded Aperture Imaging, Non-Imaging, and Unconventional Imaging Sensor Systems, 74680G (24 August 2009); doi: 10.1117/12.825412
Show Author Affiliations
Mary M. Ledet, Air Force Institute of Technology (United States)
LaVern A. Starman, Air Force Institute of Technology (United States)
Ronald A. Coutu, Air Force Institute of Technology (United States)
Stanley Rogers, Air Force Research Lab. (United States)

Published in SPIE Proceedings Vol. 7468:
Adaptive Coded Aperture Imaging, Non-Imaging, and Unconventional Imaging Sensor Systems
David P. Casasent; Jean J. Dolne; Stanley Rogers; Thomas J. Karr; Victor L. Gamiz, Editor(s)

© SPIE. Terms of Use
Back to Top