Share Email Print
cover

Proceedings Paper

Combining isothermal rolling circle amplification and electrochemiluminescence for highly sensitive point mutation detection
Author(s): Qiang Su; Xiaoming Zhou
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Many pathogenic and genetic diseases are associated with changes in the sequence of particular genes. We describe here a rapid and highly efficient assay for the detection of point mutation. This method is a combination of isothermal rolling circle amplification (RCA) and high sensitive electrochemluminescence (ECL) detection. In the design, a circular template generated by ligation upon the recognition of a point mutation on DNA targets was amplified isothermally by the Phi29 polymerase using a biotinylated primer. The elongation products were hybridized with tris (bipyridine) ruthenium (TBR)-tagged probes and detected in a magnetic bead based ECL platform, indicating the mutation occurrence. P53 was chosen as a model for the identification of this method. The method allowed sensitive determination of the P53 mutation from wild-type and mutant samples. The main advantage of RCA-ECL is that it can be performed under isothermal conditions and avoids the generation of false-positive results. Furthermore, ECL provides a faster, more sensitive, and economical option to currently available electrophoresis-based methods.

Paper Details

Date Published: 6 March 2009
PDF: 8 pages
Proc. SPIE 7280, Seventh International Conference on Photonics and Imaging in Biology and Medicine, 72801U (6 March 2009); doi: 10.1117/12.821576
Show Author Affiliations
Qiang Su, South China Normal Univ. (China)
Xiaoming Zhou, South China Normal Univ. (China)


Published in SPIE Proceedings Vol. 7280:
Seventh International Conference on Photonics and Imaging in Biology and Medicine
Qingming Luo; Lihong V. Wang; Valery V. Tuchin, Editor(s)

© SPIE. Terms of Use
Back to Top