Share Email Print
cover

Proceedings Paper

In vivo mouse brain tomography by fast dual-scanning photoacoustic imaging system based on array transducer
Author(s): Sihua Yang; Da Xing
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A full-view photoacoustic tomography system with dual-scanning using a linear transducer array for fast imaging of complicated blood network was developed. In this system, a 128-element linear transducer array was used to detect photoacoustic signals by combined scanning of electronic scan and mechanical scan. An improved limited-field filtered back projection algorithm with directivity factors was applied to reconstruct the distribution of the absorbed optical energy deposit. An in vivo experiment on a mouse brain was performed to evaluate the ability of this composite system. A clear view of the cerebrovascular network on the brain cortex was acquired successfully. Furthermore, the reconstruct images with different number of scanning positions were also investigated and analyzed to induce a compromised proposal between scanning time and scanning number. The experimental results demonstrate the multi-element photoacoustic imaging system has the potential to acquire the time-resolved functional information for fundamental research of small animal brain imaging.

Paper Details

Date Published: 6 March 2009
PDF: 8 pages
Proc. SPIE 7280, Seventh International Conference on Photonics and Imaging in Biology and Medicine, 72802B (6 March 2009); doi: 10.1117/12.821574
Show Author Affiliations
Sihua Yang, South China Normal Univ. (China)
Da Xing, South China Normal Univ. (China)


Published in SPIE Proceedings Vol. 7280:
Seventh International Conference on Photonics and Imaging in Biology and Medicine
Qingming Luo; Lihong V. Wang; Valery V. Tuchin, Editor(s)

© SPIE. Terms of Use
Back to Top