Share Email Print

Proceedings Paper

Development of optical micro resonance based sensor for detection and identification of microparticles and biological agents
Author(s): Vladimir A. Saetchnikov; Elina A. Tcherniavskaia; Gustav Schweiger
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A novel emerging technique for the label-free analysis of nanoparticles including biomolecules using optical micro cavity resonance of whispering-gallery-type modes is being developed. Schemes of such a method based on microsphere melted by laser on the tip of a standard single mode fiber optical cable with a laser and free microsphere matrix have been developed. Using a calibration principal of ultra high resolution spectroscopy based on such a scheme the method is being transformed to make further development for microbial application. The sensitivity of developed schemes has been tested to refractive index changes by monitoring the magnitude of the whispering gallery modes spectral shift. Water solutions of ethanol, glucose, vitamin C and biotin have been used. Some other schemes using similar principals: stand-alone, array and matrix microsphere resonators, liquid core optical ring resonators are also being under development. The influences of the gap in whispering-gallery modes on energy coupling, resonance quality and frequency have been investigated. An optimum gap for sensing applications has been defined at the half maximum energy coupling where both the Q factor and coupling efficiency are high and the resonance frequency is little affected by the gap variation. Developed schemes have been demonstrated to be a promising technology platform for sensitive, lab-on-chip type sensor which can be used for development of diagnostic tools for different biological molecules, e.g. proteins, oligonucleotides, oligosaccharides, lipids, small molecules, viral particles, cells as well as in different experimental contexts e.g. proteomics, genomics, drug discovery, and membrane studies.

Paper Details

Date Published: 20 May 2009
PDF: 6 pages
Proc. SPIE 7366, Photonic Materials, Devices, and Applications III, 73661L (20 May 2009); doi: 10.1117/12.821079
Show Author Affiliations
Vladimir A. Saetchnikov, Belarusian State Univ. (Belarus)
Elina A. Tcherniavskaia, Belarusian State Univ. (Belarus)
Gustav Schweiger, Ruhr-Univ. Bochum (Germany)

Published in SPIE Proceedings Vol. 7366:
Photonic Materials, Devices, and Applications III
Ali Serpenguzel; Gonçal Badenes; Giancarlo C. Righini, Editor(s)

© SPIE. Terms of Use
Back to Top