Share Email Print
cover

Proceedings Paper

Multi-frequency metal detector in high mineralization
Author(s): Laurence Stamatescu; Gregory Harmer; Oliver Nesper; Dorin Bordean; Yuri Tkachenko
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The successful detection and discrimination of mines is very difficult in areas of high soil mineralization. In these areas, the soil can make a significant contribution to the received signal that causes false detections or masks the true mine response. To address this problem, Minelab has developed a continuous wave (CW) multi-frequency digital detector (MFDD). It transmits four frequencies (between 1 kHz and 45 kHz) and each has a high dynamic range that approaches 120 dB. The mineralized soil with high magnetic susceptibility affects the characteristics of the sensor-head, in particular the inductance of the transmitting and receiving windings. These in turn affect the front-end electronics and measuring circuits and can lead to excessive ground noise that makes detection difficult. Minelab has modeled the effect that the soil has on the sensor-head and developed methods to monitor these effects. By having a well calibrated detector, which is demonstrated by the tight agreement of raw ground signals with theoretical ground models, the tasks of ground balance and discrimination become much more reliable and robust.

Paper Details

Date Published: 4 May 2009
PDF: 10 pages
Proc. SPIE 7303, Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XIV, 73031A (4 May 2009); doi: 10.1117/12.819241
Show Author Affiliations
Laurence Stamatescu, Minelab Electronics (Australia)
Gregory Harmer, Minelab Electronics (Australia)
Oliver Nesper, Minelab Electronics (Australia)
Dorin Bordean, Minelab Electronics (Australia)
Yuri Tkachenko, Minelab Electronics (Australia)


Published in SPIE Proceedings Vol. 7303:
Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XIV
Russell S. Harmon; J. Thomas Broach; John H. Holloway, Editor(s)

© SPIE. Terms of Use
Back to Top