Share Email Print

Proceedings Paper

Thermal control subsystem requirements and challenges for a responsive satellite bus
Author(s): Andrew D. Williams; M. Eric Lyall; Derek W. Hengeveld; Quinn E. Young
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The traditional approach to satellite design is a customized and highly optimized satellite bus. The primary design driver is to minimize mass but often at the expense of schedule and non-recurring engineering costs. The result after years of development is a high performance system with minimal flexibility. Consequently, there is a need for responsive, small satellites that are able to accommodate different missions, changing threats, and emerging technologies for which the traditional development approach is unable to satisfy. Instead, systems must be modular and/or robust. One of the subsystems that will be challenging for the development of modular and/or robust architectures is the thermal control subsystem (TCS). To design a traditional TCS, virtually every aspect of the mission, the satellite, and the components must be known before an intense design program can be completed. However, the mission, payload, components, and requirements are largely unknown before mission initiation. To provide a baseline for the TCS design and to help bound the problem for the development of robust thermal systems, the range of external and internal heat loads for small satellites were evaluated. From this analysis, the realistic worst design cases were identified along with other requirements for robust thermal control systems. Finally, the paper will discuss the merits of various thermal architectures and the challenges associated with achieving the requirements for robust thermal control for responsive satellite buses.

Paper Details

Date Published: 6 May 2009
PDF: 10 pages
Proc. SPIE 7330, Sensors and Systems for Space Applications III, 73300E (6 May 2009); doi: 10.1117/12.818826
Show Author Affiliations
Andrew D. Williams, Air Force Research Lab. (United States)
M. Eric Lyall, Air Force Research Lab. (United States)
Derek W. Hengeveld, Purdue Univ. (United States)
Quinn E. Young, Utah State Univ. Research Foundation (United States)

Published in SPIE Proceedings Vol. 7330:
Sensors and Systems for Space Applications III
Joseph L. Cox; Pejmun Motaghedi, Editor(s)

© SPIE. Terms of Use
Back to Top