Share Email Print
cover

Proceedings Paper

Exploring entanglement in the context of quantum sensing
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Motivated by an interest in quantum sensing, we define carefully a degree of entanglement, starting with bipartite pure states and building up to a definition applicable to any mixed state on any tensor product of finite-dimensional vector spaces. For mixed states the degree of entanglement is defined in terms of a minimum over all possible decompositions of the mixed state into pure states. Using a variational analysis we show a property of minimizing decompositions. Combined with data about the given mixed state, this property determines the degrees of entanglement of a given mixed state. For pure or mixed states symmetric under permutation of particles, we show that no partial trace can increase the degree of entanglement. For selected less-than-maximally-entangled pure states, we quantify the degree of entanglement surviving a partial trace.

Paper Details

Date Published: 27 April 2009
PDF: 12 pages
Proc. SPIE 7342, Quantum Information and Computation VII, 734206 (27 April 2009); doi: 10.1117/12.818723
Show Author Affiliations
John M. Myers, Harvard Univ. (United States)
Tai Tsun Wu, Harvard Univ. (United States)


Published in SPIE Proceedings Vol. 7342:
Quantum Information and Computation VII
Eric J. Donkor; Andrew R. Pirich; Howard E. Brandt, Editor(s)

© SPIE. Terms of Use
Back to Top