Share Email Print
cover

Proceedings Paper

Bayesian detection of acoustic muzzle blasts
Author(s): Kenneth D. Morton; Leslie Collins
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Acoustic detection of gunshots has many security and military applications. Most gunfire produces both an acoustic muzzle-blast signal as well as a high-frequency shockwave. However some guns do not propel bullets with the speed required to cause shockwaves, and the use of a silencer can significantly reduce the energy of muzzle blasts; thus, although most existing commercial and military gunshot detection systems are based on shockwave detection, reliable detection across a wide range of applications requires the development of techniques which incorporate both muzzle-blast and shockwave phenomenologies. The detection of muzzle blasts is often difficult due to the presence of non-stationary background signals. Previous approaches to muzzle blast detection have applied pattern recognition techniques without specifically considering the non-stationary nature of the background signals and thus these techniques may perform poorly under realistic operating conditions. This research focuses on time domain modeling of the non-stationary background using Bayesian auto-regressive models. Bayesian parameter estimation can provide a principled approach to non-stationary modeling while also eliminating the stability concerns associated with standard adaptive procedures. Our proposed approach is tested on a synthetic dataset derived from recordings of actual background signals and a database of isolated gunfire. Detection results are compared to a standard adaptive approach, the least-mean squares (LMS) algorithm, across several signal to background ratios in both indoor and outdoor conditions.

Paper Details

Date Published: 5 May 2009
PDF: 12 pages
Proc. SPIE 7305, Sensors, and Command, Control, Communications, and Intelligence (C3I) Technologies for Homeland Security and Homeland Defense VIII, 730511 (5 May 2009); doi: 10.1117/12.818547
Show Author Affiliations
Kenneth D. Morton, Duke Univ. (United States)
Leslie Collins, Duke Univ. (United States)


Published in SPIE Proceedings Vol. 7305:
Sensors, and Command, Control, Communications, and Intelligence (C3I) Technologies for Homeland Security and Homeland Defense VIII
Edward M. Carapezza, Editor(s)

© SPIE. Terms of Use
Back to Top