Share Email Print
cover

Proceedings Paper

The streaming potential method for modeling the electromechanical responses of ionic polymer transducers
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A streaming potential method for modeling the electromechanical responses due to imposed deformation of ionic polymer transducers (IPTs) is presented. It has been argued that imperfect ion pairing results in the availability of free counterions within the hydrophilic regions, thereby resulting in the presence of an electrolyte within these regions in the hydrophobic polymer matrix. When there is a net relative motion of this electrolyte with respect to the electrode, a streaming potential should result. It is hypothesized that a streaming potential mechanism within the electrode regions should be able to predict sensing responses for all modes of deformation. Based on a recently introduced parallel waterchannel morphology in Nafion® membrane, this model successfully addresses the physics of sensing in IPT bending. A linear relationship between the tip deflection of an IPT cantilever beam and the current generated in the IPT is achieved. The result trends show a good agreement with the experimental measurements. While this work studies the bending mode, it is able to be adapted for the other three sensing modes.

Paper Details

Date Published: 30 March 2009
PDF: 8 pages
Proc. SPIE 7292, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2009, 72924H (30 March 2009); doi: 10.1117/12.817707
Show Author Affiliations
Fei Gao, Univ. of Pittsburgh (United States)
Lisa Mauck Weiland, Univ. of Pittsburgh (United States)


Published in SPIE Proceedings Vol. 7292:
Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2009
Masayoshi Tomizuka, Editor(s)

© SPIE. Terms of Use
Back to Top