Share Email Print
cover

Proceedings Paper

High-fidelity conical piezoelectric transducers and finite element models utilized to quantify elastic waves generated from ball collisions
Author(s): Gregory C. McLaskey; Steven D. Glaser
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Experimental studies were performed using high-fidelity broadband Glaser-NIST conical transducers to quantify stress waves produced by the elastic collision of a tiny ball and a massive plate. These sensors are sensitive to surface-normal displacements down to picometers in amplitude, in a frequency range of 20 kHz to over 1 MHz. Both the collision and the resulting transient elastic waves are modeled with the finite element program ABAQUS and described theoretically through a marriage of the Hertz theory of contact and a full elastodynamic Green's function found using generalized ray theory. The calculated displacements were compared to those measured through the Glaser-NIST sensors.

Paper Details

Date Published: 30 March 2009
PDF: 8 pages
Proc. SPIE 7292, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2009, 72920S (30 March 2009); doi: 10.1117/12.817606
Show Author Affiliations
Gregory C. McLaskey, Univ. of California, Berkeley (United States)
Steven D. Glaser, Univ. of California, Berkeley (United States)


Published in SPIE Proceedings Vol. 7292:
Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2009
Masayoshi Tomizuka, Editor(s)

© SPIE. Terms of Use
Back to Top