Share Email Print
cover

Proceedings Paper

Development of an innovative energy harvesting device using MFC bimorphs
Author(s): Majid Tabesh; The Nguyen; Amin M. Motlagh; Mohammad Elahinia
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Recently, widespread attention has been directed towards scavenging energy from renewable sources such as wind. Piezoelectric materials are particularly suitable for capturing energy from motion since mechanical deflection of a piezoelectric specimen results in an electric displacement. This electricity can be stored in batteries or used to power portable devices. The present work is on the development of a device that can generate electricity from an oscillating motion using a piezoelectric Macro Fiber Composite (MFC) bimorph. Previously, bimorph vibration was created by a rotating or reciprocating part hitting the bimorph tip; whereas in the current work, base reciprocation excites the piezoelectric bimorph. The device includes a fan blade, which aligns with the direction of the wind and moves a rod in vertical direction. The microfiber composite beams (MFC) are attached to the upper end of the rod. Reciprocation of the rod acts as a harmonic excitation for the MFC bimorphs. Vibration of the MFCs produces electricity which is stored in a capacitor to be used to power electronic systems such as different types of remote sensors. Simulation and experimental results have been compared. In vibration and wind tunnel experiments, comparable amounts of energy were collected and accumulated in a capacitor.

Paper Details

Date Published: 6 April 2009
PDF: 12 pages
Proc. SPIE 7288, Active and Passive Smart Structures and Integrated Systems 2009, 72880F (6 April 2009); doi: 10.1117/12.817576
Show Author Affiliations
Majid Tabesh, Univ. of Toledo (United States)
The Nguyen, Univ. of Toledo (United States)
Amin M. Motlagh, Univ. of Toledo (United States)
Mohammad Elahinia, Univ. of Toledo (United States)


Published in SPIE Proceedings Vol. 7288:
Active and Passive Smart Structures and Integrated Systems 2009
Mehdi Ahmadian; Mehrdad N. Ghasemi-Nejhad, Editor(s)

© SPIE. Terms of Use
Back to Top