Share Email Print

Proceedings Paper

Imaging Fourier transform spectrometry of chemical plumes
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A midwave infrared (MWIR) imaging Fourier transform spectrometer (FTS), the Telops FIRST-MWE (Field-portable Imaging Radiometric Spectrometer Technology - Midwave Extended) has been utilized for the standoff detection and characterization of chemical plumes. Successful collection and analysis of MWIR hyperspectral imagery of jet engine exhaust has allowed us to produce spatial profiles of both temperature and chemical constituent concentrations of exhaust plumes. Successful characterization of this high temperature combustion event has led to the collection and analysis of hyperspectral imagery of lower temperature emissions from industrial smokestacks. This paper presents MWIR data from remote collection of hyperspectral imagery of methyl salicilate (MeS), a chemical warfare agent simulant, during the Chemical Biological Distributed Early Warning System (CBDEWS) test at Dugway Proving Grounds, UT in 2008. The data did not contain spectral lines associated with emission of MeS. However, a few broad spectral features were present in the background-subtracted plume spectra. Further analysis will be required to assign these features, and determine the utility of MWIR hyperspectral imagery for analysis of chemical warfare agent plumes.

Paper Details

Date Published: 8 May 2009
PDF: 11 pages
Proc. SPIE 7304, Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing X, 73040J (8 May 2009); doi: 10.1117/12.816711
Show Author Affiliations
Kenneth C. Bradley, Air Force Institute of Technology (United States)
Kevin C. Gross, Air Force Institute of Technology (United States)
Glen P. Perram, Air Force Institute of Technology (United States)

Published in SPIE Proceedings Vol. 7304:
Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing X
Augustus W. Fountain; Patrick J. Gardner, Editor(s)

© SPIE. Terms of Use
Back to Top