Share Email Print
cover

Proceedings Paper

A new design concept for multifunctional fasteners using smart materials
Author(s): Hwan-Sik Yoon
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

In this paper, a new design concept for multifunctional fasteners using smart materials is presented. The proposed piezoelectric devices, named 'smart fasteners,' can be fabricated by modifying the design of ordinary fasteners such that they have a piezoelectric element and a control unit embedded in their body. These smart fasteners can not only clamp structural members like ordinary fasteners but also measure the response of the structure and generate forces to enhance the dynamic performance of the structure. Due to their fastener-type design, they are more convenient to install onto or remove from structures compared to conventional piezoceramic patch actuators for which a bonding epoxy layer needs to be applied. In order to demonstrate their applicability in active vibration controls, a simulation study was conducted on a fixed-fixed beam structure. Since the control force is applied at the boundary of the structure where the smart fasteners are attached, a new control algorithm called Active Boundary Control (ABC) was developed using the Lyapunov's direct method. The simulation results show that smart fasteners can be used to suppress vibration of the beam by applying the Lyapunov-based Active Boundary Control algorithm.

Paper Details

Date Published: 30 March 2009
PDF: 8 pages
Proc. SPIE 7292, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2009, 72922I (30 March 2009); doi: 10.1117/12.816523
Show Author Affiliations
Hwan-Sik Yoon, Tennessee Technological Univ. (United States)


Published in SPIE Proceedings Vol. 7292:
Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2009
Masayoshi Tomizuka, Editor(s)

© SPIE. Terms of Use
Back to Top