Share Email Print
cover

Proceedings Paper

A computational fluid dynamics simulation of a high pressure ejector COIL and comparison to experiments
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The results of three-dimensional computational fluid dynamics model calculations are reported in detail and compared to available experimental results [Nikolaev et al., IEEE J. Quantum Electron. 38, 421 (2002)]. It is shown that the model is applicable to high pressure, ejector type chemical oxygen-iodine laser (COIL), reasonably reproducing the measured gain, temperature, static pressure and gas velocity. A previous model which included I2(A' 3Pi2u), I2(A 3Pi1u) and O2(a 1Deltag, v) as significant intermediates in the dissociation of I2 [Waichman et al., J. Appl. Phys. 102, 013108 (2007)] reproduced the measured gain and temperature of a low pressure supersonic COIL. The previous model is complemented here by adding the effects of turbulence, which play an important role in high pressure COILs.

Paper Details

Date Published: 17 April 2009
PDF: 8 pages
Proc. SPIE 7131, XVII International Symposium on Gas Flow, Chemical Lasers, and High-Power Lasers, 71310R (17 April 2009); doi: 10.1117/12.816445
Show Author Affiliations
Karol Waichman, NRCN (Israel)
Boris D. Barmashenko, Ben-Gurion Univ. of the Negev (Israel)
Salman Rosenwaks, Ben-Gurion Univ. of the Negev (Israel)


Published in SPIE Proceedings Vol. 7131:
XVII International Symposium on Gas Flow, Chemical Lasers, and High-Power Lasers
Rui Vilar; Olinda Conde; Marta Fajardo; Luís O. Silva; Margarida Pires; Andrei Utkin, Editor(s)

© SPIE. Terms of Use
Back to Top