Share Email Print

Proceedings Paper

Incorporation and characterization of biological molecules in droplet-interface bilayer networks for novel active systems
Author(s): Stephen A. Sarles; Pegah Ghanbari Bavarsad; Donald J. Leo
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Biological molecules including phospholipids and proteins offer scientists and engineers a diverse selection of materials to develop new types of active materials and smart systems based on ion conduction. The inherent energy-coupling abilities of these components create novel kinds of transduction elements. Networks formed from droplet-interface bilayers (DIB) are a promising construct for creating cell mimics that allow for the assembly and study of these active biological molecules. The current-voltage relationship of symmetric, "lipid-in" dropletinterface bilayers are characterized using electrical impedance spectroscopy (EIS) and cyclic voltammetry (CV). "Lipid-in" diphytanoyl phosphatidylcholine (DPhPC) droplet-interface bilayers have specific resistances of nearly 10MΩ•cm2 and rupture at applied potentials greater than 300mV, indicating the "lipid-in" approach produces higher quality interfacial membranes than created using the original "lipid-out" method. The incorporation of phospholipids into the droplet interior allows for faster monolayer formation but does not inhibit the selfinsertion of transmembrane proteins into bilayer interfaces that separate adjacent droplets. Alamethicin proteins inserted into single and multi-DIB networks produce a voltage-dependent membrane conductance and current measurements on bilayers containing this type of protein exhibit a reversible, 3-4 order-of-magnitude conductance increase upon application of voltage.

Paper Details

Date Published: 7 April 2009
PDF: 10 pages
Proc. SPIE 7288, Active and Passive Smart Structures and Integrated Systems 2009, 72880H (7 April 2009); doi: 10.1117/12.815846
Show Author Affiliations
Stephen A. Sarles, Virginia Polytechnic Institute and State Univ. (United States)
Pegah Ghanbari Bavarsad, Virginia Polytechnic Institute and State Univ. (United States)
Donald J. Leo, Virginia Polytechnic Institute and State Univ. (United States)

Published in SPIE Proceedings Vol. 7288:
Active and Passive Smart Structures and Integrated Systems 2009
Mehdi Ahmadian; Mehrdad N. Ghasemi-Nejhad, Editor(s)

© SPIE. Terms of Use
Back to Top