Share Email Print
cover

Proceedings Paper

FEA of dielectric elastomer minimum energy structures as a tool for biomimetic design
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Ctenophores or "comb jellies" are small sea creatures that propel themselves with rows of ciliated bending actuators or 'paddles'. In some species the actuators are coordinated via mechano-sensitivity; the physical contact of one paddle triggers the motion of the next resulting in a wave of activation along the row. We seek to replicate this coordination with an array of capacitive self-sensing Dielectric Elastomer Minimum Energy Structure(s) (DEMES) bending actuators. For simplicity we focused on a conveyor application in air where four DEMES were used to roll cylindrical loads along some rails. Such a system can automatically adjust to changing load dynamics and requires very little computational overhead to achieve coordination. We used a finite element modelling approach for DEMES development. The model used a hybrid Arruda-Boyce strain energy function augmented with an electrostatic energy density term to describe the DEA behaviour. This allowed the use of computationally efficient membrane elements giving simulation times of approximately 15 minutes and thus rapid design development. Criteria addressing failure modes, the equilibrium state, and stroke of the actuators were developed. The model had difficulty in capturing torsional instability in the frame thus design for this was conducted experimentally. The array was built and successfully propelled teflon and brass rollers up an incline. Noise in the capacitive sensor limited the sensitivity of the actuators however with PCB circuit fabrication this problem should be solved.

Paper Details

Date Published: 6 April 2009
PDF: 11 pages
Proc. SPIE 7287, Electroactive Polymer Actuators and Devices (EAPAD) 2009, 728706 (6 April 2009); doi: 10.1117/12.815818
Show Author Affiliations
Benjamin O'Brien, Univ. of Auckland (New Zealand)
Todd Gisby, Univ. of Auckland (New Zealand)
Emilio Calius, Industrial Research Ltd. (New Zealand)
Shane Xie, Univ. of Auckland (New Zealand)
Iain Anderson, Univ. of Auckland (New Zealand)


Published in SPIE Proceedings Vol. 7287:
Electroactive Polymer Actuators and Devices (EAPAD) 2009
Yoseph Bar-Cohen; Thomas Wallmersperger, Editor(s)

© SPIE. Terms of Use
Back to Top