Share Email Print

Proceedings Paper

Low voltage linear actuators based on carbide-derived carbon powder
Author(s): Janno Torop; Mati Arulepp; Jaan Leis; Andres Punning; Urmas Johanson; Alvo Aabloo
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Novel linear electromechanical actuators based on nanoporous TiC-derived carbons were prepared and studied. Traditionally, thin membranes containing mobile ions are used for bending actuators. We describe a linear actuator which consists of carbon material thin film and an ionic liquid. The thin film is made from nanoporous TiC-derived carbon powder and polytetrafluoroethylene (PTFE) as a binder agent. The working mechanism of the actuators is based on the interactions between the high-surface-area carbide-derived carbon (CDC) and the ions of the electrolyte. These actuators are able to generate linear actuation of about 1% from their thickness under voltages less than 3 V. The motion starts already at 0.8V and the magnitude of actuation depends on the electrical charge stored by the device. Two different types of electrolyte were used: 1) Ionic liquid (EMITf) and 2) Tetra-alcyl-ammonium salt in propylene carbonate (PC) solution. The actuators with ionic liquid have 60% higher movement. The electromechanical parameters of the actuators were studied by using cyclic voltammetry and electrochemical impedance spectroscopy methods.

Paper Details

Date Published: 6 April 2009
PDF: 8 pages
Proc. SPIE 7287, Electroactive Polymer Actuators and Devices (EAPAD) 2009, 72870S (6 April 2009); doi: 10.1117/12.815643
Show Author Affiliations
Janno Torop, Univ. of Tartu (Estonia)
Mati Arulepp, Univ. of Tartu (Estonia)
Carbon Nanotech, Ltd. (Estonia)
Jaan Leis, Carbon Nanotech, Ltd. (Estonia)
Univ. of Tartu (Estonia)
Andres Punning, Univ. of Tartu (Estonia)
Urmas Johanson, Univ. of Tartu (Estonia)
Alvo Aabloo, Univ. of Tartu (Estonia)

Published in SPIE Proceedings Vol. 7287:
Electroactive Polymer Actuators and Devices (EAPAD) 2009
Yoseph Bar-Cohen; Thomas Wallmersperger, Editor(s)

© SPIE. Terms of Use
Back to Top