Share Email Print
cover

Proceedings Paper

High temperature piezoelectric drill
Author(s): Xiaoqi Bao; James Scott; Kate Boudreau; Yoseph Bar-Cohen; Stewart Sherrit; Mircea Badescu; Tom Shrout; Shujun Zhang
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The current NASA Decadal mission planning effort has identified Venus as a significant scientific target for a surface in-situ sampling/analyzing mission. The Venus environment represents several extremes including high temperature (460°C), high pressure (~9 MPa), and potentially corrosive (condensed sulfuric acid droplets that adhere to surfaces during entry) environments. This technology challenge requires new rock sampling tools for these extreme conditions. Piezoelectric materials can potentially operate over a wide temperature range. Single crystals, like LiNbO3, have a Curie temperature that is higher than 1000°C and the piezoelectric ceramics Bismuth Titanate higher than 600°C. A study of the feasibility of producing piezoelectric drills that can operate in the temperature range up to 500°C was conducted. The study includes the high temperature properties investigations of engineering materials and piezoelectric ceramics with different formulas and doping. The drilling performances of a prototype Ultrasonic/Sonic Drill/Corer (USDC) using high temperate piezoelectric ceramics and single crystal were tested at temperature up to 500°C. The detailed results of our study and a discussion of the future work on performance improvements are presented in this paper.

Paper Details

Date Published: 30 March 2009
PDF: 8 pages
Proc. SPIE 7292, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2009, 72922B (30 March 2009); doi: 10.1117/12.815384
Show Author Affiliations
Xiaoqi Bao, Jet Propulsion Lab. (United States)
James Scott, Jet Propulsion Lab. (United States)
Kate Boudreau, Jet Propulsion Lab. (United States)
Yoseph Bar-Cohen, Jet Propulsion Lab. (United States)
Stewart Sherrit, Jet Propulsion Lab. (United States)
Mircea Badescu, Jet Propulsion Lab. (United States)
Tom Shrout, The Pennsylvania State Univ. (United States)
Shujun Zhang, The Pennsylvania State Univ. (United States)


Published in SPIE Proceedings Vol. 7292:
Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2009
Masayoshi Tomizuka, Editor(s)

© SPIE. Terms of Use
Back to Top