Share Email Print
cover

Proceedings Paper

VCSEL technology for medical diagnostics and therapeutics
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In the 1990's a new laser technology, Vertical Cavity Surface Emitting Lasers, or VCSELs, emerged and transformed the data communication industry. The combination of performance characteristics, reliability and performance/cost ratio allowed high data rate communication to occur over short distances at a commercially viable price. VCSELs have not been widely used outside of this application space, but with the development of new attributes, such as a wider range of available wavelengths, the demonstration of arrays of VCSELs on a single chip, and a variety of package form factors, VCSELs can have a significant impact on medical diagnostic and therapeutic applications. One area of potential application is neurostimulation. Researchers have previously demonstrated the feasibility of using 1850nm light for nerve stimulation. The ability to create an array of VCSELs emitting at this wavelength would allow significantly improved spatial resolution, and multiple parallel channels of stimulation. For instance, 2D arrays of 100 lasers or more can be integrated on a single chip less than 2mm on a side. A second area of interest is non-invasive sensing. Performance attributes such as the narrow spectral width, low power consumption, and packaging flexibility open up new possibilities in non-invasive and/or continuous sensing. This paper will suggest ways in which VCSELs can be implemented within these application areas, and the advantages provided by the unique performance characteristics of the VCSEL. The status of VCSEL technology as a function of available wavelength and array size and form factors will be summarized.

Paper Details

Date Published: 23 February 2009
PDF: 10 pages
Proc. SPIE 7180, Photons and Neurons, 71800T (23 February 2009); doi: 10.1117/12.815307
Show Author Affiliations
M. K. Hibbs-Brenner, Vixar (United States)
K. L. Johnson, Vixar (United States)
M. Bendett, Lockheed Martin Aculight (United States)


Published in SPIE Proceedings Vol. 7180:
Photons and Neurons
Anita Mahadevan-Jansen; E. Duco Jansen, Editor(s)

© SPIE. Terms of Use
Back to Top