Share Email Print
cover

Proceedings Paper

Coupled sensor/platform control design for low-level chemical detection with position-adaptive micro-UAVs
Author(s): Thomas Goodwin; Ryan Carr; Atindra K. Mitra; Rastko R. Selmic
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We discuss the development of Position-Adaptive Sensors [1] for purposes for detecting embedded chemical substances in challenging environments. This concept is a generalization of patented Position-Adaptive Radar Concepts developed at AFRL for challenging conditions such as urban environments. For purposes of investigating the detection of chemical substances using multiple MAV (Micro-UAV) platforms, we have designed and implemented an experimental testbed with sample structures such as wooden carts that contain controlled leakage points. Under this general concept, some of the members of a MAV swarm can serve as external position-adaptive "transmitters" by blowing air over the cart and some of the members of a MAV swarm can serve as external position-adaptive "receivers" that are equipped with chemical or biological (chem/bio) sensors that function as "electronic noses". The objective can be defined as improving the particle count of chem/bio concentrations that impinge on a MAV-based position-adaptive sensor that surrounds a chemical repository, such as a cart, via the development of intelligent position-adaptive control algorithms. The overall effect is to improve the detection and false-alarm statistics of the overall system. Within the major sections of this paper, we discuss a number of different aspects of developing our initial MAV-Based Sensor Testbed. This testbed includes blowers to simulate position-adaptive excitations and a MAV from Draganfly Innovations Inc. with stable design modifications to accommodate our chem/bio sensor boom design. We include details with respect to several critical phases of the development effort including development of the wireless sensor network and experimental apparatus, development of the stable sensor boom for the MAV, integration of chem/bio sensors and sensor node onto the MAV and boom, development of position-adaptive control algorithms and initial tests at IDCAST (Institute for the Development and Commercialization of Advanced Sensor Technologies), and autonomous positionadaptive chem/bio tests and demos in the MAV Lab at AFRL Air Vehicles Directorate. For this particular MAV implementation of chem/bio sensors, we selected miniature Methane, Nitrogen Dioxide, and Carbon Monoxide sensors. To safely simulate the behavior of chem/bio substances in our laboratory environment, we used either cigarette smoke or incense. We present a set of concise parametric results along with visual demonstration of our new position-adaptive sensor capability. Two types of experiments were conducted: with sensor nodes screening the chemical contaminant (cigarette smoke or incense) without MAVs, and with a sensor node integrated with the MAV. It was shown that the MOS-based chemical sensors could be used for chemical leakage detection, as well as for position-adaptive sensors on air/ground vehicles as sniffers for chemical contaminants.

Paper Details

Date Published: 29 April 2009
PDF: 15 pages
Proc. SPIE 7347, Evolutionary and Bio-Inspired Computation: Theory and Applications III, 734710 (29 April 2009); doi: 10.1117/12.815253
Show Author Affiliations
Thomas Goodwin, Louisiana Tech Univ. (United States)
Ryan Carr, Air Force Research Lab. (United States)
Atindra K. Mitra, Air Force Research Lab. (United States)
Rastko R. Selmic, Louisiana Tech Univ. (United States)


Published in SPIE Proceedings Vol. 7347:
Evolutionary and Bio-Inspired Computation: Theory and Applications III
Teresa H. O'Donnell; Misty Blowers; Kevin L. Priddy, Editor(s)

© SPIE. Terms of Use
Back to Top