Share Email Print

Proceedings Paper

Non-ionic PAG behavior under high energy exposure sources
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

A series of non-ionic PAGs were synthesized and their acid generation efficiency measured under deep ultraviolet and electron beam exposures. The acid generation efficiency was determined with an on-wafer method that uses spectroscopic ellipsometry to measure the absorbance of an acid sensitive dye (Coumarin 6). Under DUV exposures, common ionic onium salt PAGs showed excellent photoacid generation efficiency, superior to most non-ionic PAGS tested in this work. In contrast, under 100 keV high energy e-beam exposures, almost all of the non-ionic PAGs showed significantly better acid generation performance than the ionic onium salt PAGs tested. In particular, one non-ionic PAG showed almost an order of magnitude improvement in the Dill C acid generation rate constant as compared to a triarylsulfonium PAG. The high energy acid generation efficiency was found to correlate well with the electron affinity of the PAGs, suggesting that improvements in PAG design can be predicted. Non-ionic PAGs merit further investigation as a means for producing higher sensitivity resists under high energy exposure sources.

Paper Details

Date Published: 1 April 2009
PDF: 9 pages
Proc. SPIE 7273, Advances in Resist Materials and Processing Technology XXVI, 72731R (1 April 2009); doi: 10.1117/12.814459
Show Author Affiliations
Richard A. Lawson, Georgia Institute of Technology (United States)
David E. Noga, Georgia Institute of Technology (United States)
Laren M. Tolbert, Georgia Institute of Technology (United States)
Clifford L. Henderson, Georgia Institute of Technology (United States)

Published in SPIE Proceedings Vol. 7273:
Advances in Resist Materials and Processing Technology XXVI
Clifford L. Henderson, Editor(s)

© SPIE. Terms of Use
Back to Top