Share Email Print
cover

Proceedings Paper

Aperiodic stochastic resonant data storage on directed small-world networks
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We study aperiodic stochastic resonant data storage in an extended system evolving on directed small-world networks. Each node of the network represents a dynamical bistable system, and nodes are randomly connected by the directed shortcuts with a rewiring probability. The constructive role of the internal noise and the random connectivity is characterized by the bit error rate and demonstrated in numerical simulations. Random internal noise in each node enhances the survival of a short-time length of binary signal via aperiodic stochastic resonance. Interestingly, random connectivity further improves the propagation time of binary information through the small-world architecture.

Paper Details

Date Published: 30 December 2008
PDF: 8 pages
Proc. SPIE 7270, Biomedical Applications of Micro- and Nanoengineering IV and Complex Systems, 727014 (30 December 2008); doi: 10.1117/12.813926
Show Author Affiliations
Fabing Duan, Qingdao Univ. (China)
Derek Abbott, The Univ. of Adelaide (Australia)


Published in SPIE Proceedings Vol. 7270:
Biomedical Applications of Micro- and Nanoengineering IV and Complex Systems
Dan V. Nicolau; Guy Metcalfe, Editor(s)

© SPIE. Terms of Use
Back to Top