Share Email Print
cover

Proceedings Paper

Comparison research of algorithms about ortho-rectification for remote sensing image
Author(s): Qingzu Luan; Huiping Liu; Xiaodong Wang; Wenli Huang; Xiaoluo Zhou
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

There are kinds of methods for ortho-rectification in application of remote sensing, including Collinearity Equation Model, Strict Geometric Model based on Affine Transformation, Improved Polynomial Model, Rational Function Model, Method based on Neural Network, and so on. But there is lack of system comparison between these methods. On the basis of detailing the algorithm of these methods above, advantages and drawbacks about these algorithms are summarized in this paper. Specific emphasis is the mathematical derivation and algorithm of RFM. Two kinds of algorithm based on neural network were taken in application of ortho-rectification. To compare accuracy and effective between the above methods, we also detailed the processing steps and make some experiments. The result shows that: in the condition of the same GCPs distribution, Rational Function Model that can reach sub pixel accuracy is the best of all from the viewpoint of precision, which can be used in practice in spite of its relatively slower speed.

Paper Details

Date Published: 7 November 2008
PDF: 8 pages
Proc. SPIE 7147, Geoinformatics 2008 and Joint Conference on GIS and Built Environment: Classification of Remote Sensing Images, 714712 (7 November 2008); doi: 10.1117/12.813239
Show Author Affiliations
Qingzu Luan, Beijing Normal Univ. (China)
Huiping Liu, Beijing Normal Univ. (China)
Xiaodong Wang, Beijing Normal Univ. (China)
Wenli Huang, Beijing Normal Univ. (China)
Xiaoluo Zhou, Beijing Normal Univ. (China)


Published in SPIE Proceedings Vol. 7147:
Geoinformatics 2008 and Joint Conference on GIS and Built Environment: Classification of Remote Sensing Images
Lin Liu; Xia Li; Kai Liu; Xinchang Zhang, Editor(s)

© SPIE. Terms of Use
Back to Top