Share Email Print
cover

Proceedings Paper

Bead-based mosaicing of single plane illumination microscopy images using geometric local descriptor matching
Author(s): Stephan Preibisch; Stephan Saalfeld; Torsten Rohlfing; Pavel Tomancak
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Single Plane Illumination Microscopy (SPIM) is an emerging microscopic technique that enables live imaging of large biological specimens in their entirety. By imaging the biological sample from multiple angles, SPIM has the potential to achieve isotropic resolution throughout relatively large biological specimens. For every angle, however, only a shallow section of the specimen is imaged with high resolution, whereas deeper regions appear increasingly blurred. Existing intensity-based registration techniques still struggle to robustly and accurately align images that are characterized by limited overlap and/or heavy blurring. To be able to register such images, we add sub-resolution fluorescent beads to the rigid agarose medium in which the imaged specimen is embedded. For each segmented bead, we store the relative location of its n nearest neighbors in image space as rotation-invariant geometric local descriptors. Corresponding beads between overlapping images are identified by matching these descriptors. The bead correspondences are used to simultaneously estimate the globally optimal transformation for each individual image. The final output image is created by combining all images in an angle-independent output space, using volume injection and local content-based weighting of contributing images. We demonstrate the performance of our approach on data acquired from living embryos of Drosophila and fixed adult C.elegans worms. Bead-based registration outperformed intensity-based registration in terms of computation speed by two orders of magnitude while producing bead registration errors below 1 μm (about 1 pixel). It, therefore, provides an ideal tool for processing of long term time-lapse recordings of embryonic development consisting of hundreds of time points.

Paper Details

Date Published: 27 March 2009
PDF: 10 pages
Proc. SPIE 7259, Medical Imaging 2009: Image Processing, 72592S (27 March 2009); doi: 10.1117/12.812612
Show Author Affiliations
Stephan Preibisch, Max Planck Institute of Molecular Cell Biology and Genetics (Germany)
Stephan Saalfeld, Max Planck Institute of Molecular Cell Biology and Genetics (Germany)
Torsten Rohlfing, SRI International (United States)
Pavel Tomancak, Max Planck Institute of Molecular Cell Biology and Genetics (Germany)


Published in SPIE Proceedings Vol. 7259:
Medical Imaging 2009: Image Processing
Josien P. W. Pluim; Benoit M. Dawant, Editor(s)

© SPIE. Terms of Use
Back to Top