Share Email Print

Proceedings Paper

Nonrigid registration framework for bronchial tree labeling using robust point matching
Author(s): Arunabha Roy; Uday Patil; Bipul Das
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Automated labeling of the bronchial tree is essential for localization of airway related diseases (e.g. chronic bronchitis) and is also a useful precursor to lung-lobe labeling. We describe an automated method for registration-based labeling of a bronchial tree. The bronchial tree is segmented from a CT image using a region-growing based algorithm. The medial line of the extracted tree is then computed using a potential field based approach. The expert-labeled target (atlas) and the source bronchial trees in the form of extracted centerline point sets are brought into alignment by calculating a non-rigid thin-plate spline (TPS) mapping from the source to the target. The registration takes into account global as well as local variations in anatomy between the two images through the use of separable linear and non-linear components of the transformation; as a result it is well suited to matching structures that deviate at finer levels: namely higher order branches. The method is validated by registering together pairs of datasets for which the ground truth labels are known in advance: the labels are transferred after matching target to source and then compared with the true values. The method was tested on datasets each containing 18 branch centerpoints and 12 bifurcation locations (30 landmarks in total) annotated manually by a radiologist, where the performance was measured as the number of landmarks having the correct transfer of labels. An overall accuracy of labeling of 91.5 % was obtained in matching 23 pairs of datasets obtained from different patients.

Paper Details

Date Published: 27 March 2009
PDF: 10 pages
Proc. SPIE 7259, Medical Imaging 2009: Image Processing, 72592X (27 March 2009); doi: 10.1117/12.812496
Show Author Affiliations
Arunabha Roy, GE Global Research (India)
Uday Patil, Manipal Hospital (India)
Bipul Das, GE Global Research (India)

Published in SPIE Proceedings Vol. 7259:
Medical Imaging 2009: Image Processing
Josien P. W. Pluim; Benoit M. Dawant, Editor(s)

© SPIE. Terms of Use
Back to Top