Share Email Print

Proceedings Paper

Sensitivity analysis of a transmission line model for damage characterization in complex structures
Author(s): Dany Francoeur; Patrice Masson; Philippe Micheau
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

With the goal to detect relatively small damage while minimizing signal processing burden, an approach in the medium frequency range (10 kHz - 50 kHz) is proposed for the characterization of a damage in a complex assembly structure and more specifically, a lap joint. The approach is based on the identification of the parameters of a reference transmission line model of a damaged lap joint structure through the experimental measurement of a reflection coefficient. The transmission line model of the lap joint is first presented, where symmetrical thickness variations on a beam are used to represent the lap joint region and a notch within this region. The cost function used in the model identification approach is then defined as the squared difference between simulated and measured reflection coefficients in a given frequency range. A sensitivity analysis is conducted using the Hessian of the cost function and simulation results are presented to demonstrate the sensitivity of the cost function to variations in the sought parameters, i.e. location and depth of the notch, in the frequency domain. Experimental results are then presented to assess the sensitivity of the cost function to the variation of the depth of the notch. These experimental results confirm the simulation results which indicate that the sensitivity of the cost function to the depth of the notch increases as this depth increases. Moreover, cross-sensitivity results indicate that the sensitivity of the cost function to the location of the notch also increases as the depth of the notch increases.

Paper Details

Date Published: 26 March 2009
PDF: 12 pages
Proc. SPIE 7295, Health Monitoring of Structural and Biological Systems 2009, 729504 (26 March 2009); doi: 10.1117/12.811935
Show Author Affiliations
Dany Francoeur, Univ. de Sherbrooke (Canada)
Patrice Masson, Univ. de Sherbrooke (Canada)
Philippe Micheau, Univ. de Sherbrooke (Canada)

Published in SPIE Proceedings Vol. 7295:
Health Monitoring of Structural and Biological Systems 2009
Tribikram Kundu, Editor(s)

© SPIE. Terms of Use
Back to Top